AI in Quality Measurement

Simon Beaulah, Senior Director, Healthcare, Linguamatics
Elisabeth Marshall, MD, Director, Clinical Analytics, Linguamatics
Ross Martin, MD, Vice President, Professional Services, 360 Degree Insights LLC
Interest in AI techniques such as NLP is exploding in healthcare. Such approaches hold promise for supporting quality measurement as part of workflows that augment human review and improve efficiency.

Workshop topics:

- Introduction to AI and NLP, advantages and disadvantages
- Example quality measures:
 - Fall risk, Adult BMI assessment, Comprehensive Diabetes Care, goal-based measures and prior authorization/clinical review
- Discuss characteristics of quality measures that suit NLP
Agenda

- Different types of AI and thoughts on applications
- Example applications of NLP
- Specific measures, deeper dive
 - Fall risk and NLP at MUSC
 - Goal based measurement, Person driven outcomes
 - BMI and opportunities for NLP
- Discussion and recommendations
General discussion and potential outcomes

- Define challenges in quality measurements
- Share experiences of application of AI and NLP from the group
- Identify measures that would benefit from AI/NLP techniques
- Agree characteristics of measures that make them a good target
- Provide recommendations for NCQA and community

- Sessions on day 1 ONLY
$15.4B annually to report quality measures

Casalino et al, Health Affairs 2016
Key clinical concepts are “locked” in free text

DEC Ulcer
AFC Stool
MAL Malnutrition
URC Urin. incontinence
VIS Visually impaired
DEM Dementia
WEI Weight loss
FAL Fall risk
SSN Social support
WLK Walking difficulty

Johns Hopkins CPHIT 2016
Artificial Intelligence vs Augmented Intelligence

Artificial Intelligence
- the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages

Augmented Intelligence
- The concept of augmented intelligence is not to replace humans, but rather to capitalise on the combination of algorithms, machine learning, and data science to inform human decision-making abilities.
- Information Age
Examples of AI

Well known

Large volumes of structured features and outcomes to model with

Healthcare
Supervised and Unsupervised Machine Learning

- **Supervised**
 - Most commonly used - data scientist acts as a guide to teach the algorithm
 - Training data is already labeled with correct answers
 - For example, a classification algorithm will identify tumors after being trained on a dataset of labeled radiology images
 - Examples include: linear and logistic regression, multi-class classification, and support vector machines.

- **Unsupervised**
 - More closely aligned with what some call true artificial intelligence
 - No labeled data, algorithms identify their own patterns
 - For example, language translation from Google
 - Examples include **k-means clustering**, principal and independent component analysis, and association rules
What is Natural Language Processing?

- Extraction of concepts from the free text ("unstructured" data) of clinical reports or clinician progress notes
- More than "key word" search; Not "speech-to-text"
- Specific concept using ontologies and context:
 - "copd" vs "chronic obstructive pulmonary disease"
 - Family history of, ruled out, no evidence of
- General concepts:
 - "negative" sentiment in customer service or call center notes
- Value concepts:
 - ejection fraction, BMI
Patient shows a dilated cardiomyopathy with ejection fraction measured at 30%
Claims:
Age: 74
Gender: Male
Heart attack
Pace maker fitted
Hospitalized with DVT
Plavix

Limited understanding of disease severity and member social determinants of health and life style factors
Claims:
Age: 74
Gender: Male
Heart attack
Pace maker fitted
Hospitalized with DVT
Plavix

Clinical notes:
Ejection fraction: 50
BMI: 22
A1C: 6
No shortness of breath

Social and life style:
Non-smoker
Red wine drinker
Wife recently deceased
Lives with sister in law
Types of NLP

- Rule based
 - Analyst writes rules to extract values
 - Ideally use data driven approaches to assess variability of language
 - Manual process requiring effort to craft each rule
 - Have transparency, good for healthcare

- Machine learning
 - Focus on supervised approach, need to extract specific features
 - Requires expensive annotated data sets or gold standards
 - Needs to be transferable across variable language
 - Lots of NLP engines, requires skills to use
Challenges and Recommendations in NLP

◆ Annotated data
 – Used for evaluation, expensive process. HEDIS and other quality measures evaluations provide ready made training data

◆ NLP skills
 – In short supply but more options that enable use of NLP

◆ Transparency
 – Machine learning models lack transparency, rules better for this

◆ Workflow
 – Need to integrate with existing workflows, minimize impact to reviewers

◆ Data quality
 – PDF medical records can be terrible, use of OCR improving. More availability of EHR records securely sent to health plans and payer (SES)

◆ Data variability
 – Language varies across hospitals so need to preprocess and assess variability at scale
CHF & COPD NLP helps close care gaps and add revenue

- NLP review efforts identified otherwise undocumented CHF or COPD patients across all payers
- Eligible for disease management and quality metric denominators

- Manual chart review identified 1 care gap from 1000 patients
- NLP enriched review identified 1 care gap from 6 patients
<table>
<thead>
<tr>
<th>qID</th>
<th>NYHA Class</th>
<th>Ejection Fraction</th>
<th>Type</th>
<th>ACE/ARB Dosage</th>
<th>ACE/ARB</th>
<th>Beta Blocker</th>
<th>Dosage</th>
<th>Hit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2:3:4</td>
<td>II</td>
<td>[30, 40] % 30-40%</td>
<td>Ramipril rampiril 10 mg/d.</td>
<td>10 mg every 1d 10 mg/d.</td>
<td>25 mg every 12h</td>
<td>Carvedilol Coreg 25 mg b.i.d.</td>
<td>25 mg every 12h</td>
<td>... dyspnea and an EF of 30-40% ... 80 mg/d., Coreg 25 mg b.i.d., **NAME[VL0F8SMC] 325 ... 5 mg/d., ramipril 10 mg/d., and bumetanide 1 mg... appears to be NYHA class II and might benefit from implantation ...</td>
</tr>
<tr>
<td>1:2:3:4</td>
<td>II</td>
<td>[40, 45] % 40-45%</td>
<td>Lisinopril Prinivil 20 mg/d</td>
<td>20 mg every 1d 20 mg/d</td>
<td>25 mg every 1d 25 mg/d</td>
<td>Metoprolol Succinate Toprol XL 25 mg/d</td>
<td>25 mg every 1d 25 mg/d</td>
<td>... decline in his EF of 40-45% postoperatively. ... MEDICATIONS: Prinivil 20 mg/d, Toprol XL 25 mg/d and warfarin ... functional class at NYHA class II.</td>
</tr>
<tr>
<td>1:2:3:4</td>
<td>II</td>
<td>[45, 50] % 45%-50%</td>
<td>Lisinopril lisinopril 40 mg</td>
<td>40 mg every 1d 40 mg daily</td>
<td>25 mg every 12h 25 mg b.i.d.</td>
<td>Carvedilol carvedilol 25 mg b.i.d.</td>
<td>25 mg every 12h 25 mg b.i.d.</td>
<td>... with recovered ejection fraction of 45%-50% status post primary prevention ICD ... continues to endorse NYHA class II functional limitations. ... current heart failure medications including carvedilol 25 mg b.i.d., lisinopril 40 mg daily.</td>
</tr>
</tbody>
</table>
Fall Risk
Identifying Falls Risk Screenings Not Documented with Administrative Codes Using Natural Language Processing

Vivienne J Zhu, MD, MS,¹ Tina D Walker, BSN,RN,² Robert W Warren, MD, MS, MPH²
Peggy B Jenny, BSN, RN,² Stephane Meystre, MD, PhD,¹ Leslie A Lenert, MD, MS¹

¹Biomedical Informatics Center and ²Information Solutions
at Medical University of South Carolina, Charleston, South Carolina
Background

- Falls are a leading cause of injury in the elderly population and a significant risk factor for morbidity and mortality
- 35-40% of healthy people over 65 fall at least once each year
- Over 50% of seniors (≥ 80) fall annually
- Over 20% of falls cause a serious injury (hip fracture, brain trauma)
- 55% of all deaths due to unintentional injury among the elderly came from falling
- $31 billion estimated direct medical costs for fall injuries in the U.S. annually
- Over 50% of the elderly patients who fall do NOT discuss with their providers
Standards of falls screening

• The American Geriatrics Society and British Geriatrics Society: providers should ask all elderly patients at least annually if they had a fall or had no fall during the prior year (2001)

• CMS: falls risk screening is a core quality of care measurement
 Primary Care Providers (PCP) can receive reimbursement for falls risk screening through voluntary participation in the Physician Quality Reporting System (PQRS)

• MACRA MIPS: a law offering value-based alternative payments for reimbursing physician services (2015)

• Falls risk screening remains a high priority measure in 2017
Current approach for falls screening measures

• Reporting the percentage of patients aged 65 years and older who had a risk screening for falls within the prior 12 months
• Using CPT codes to define the numerator and denominator exception
• Limitation: may not completely or accurately reflect falls screening activities that providers performed during their practice
• Potential improvement: using Natural Language Processing (NLP) to identify falls screening from clinical notes
Objectives

• To develop an NLP approach to identify documented falls risk screening in clinical notes for patients lacking coded falls risk screening data

• To evaluate the NLP algorithm performance against a gold standard -- domain expert manual review

• To demonstrate an NLP approach could accurately identify more falls risk screening in electronic health records (EHR) than the quality measure based on administrative codes alone
Methods

• Study setting: Medical University of South Carolina (MUSC)
 – An academic medical science center serving Charleston, South Carolina, and surrounding areas
 – MUSC EHR: Epic (outpatient since 2012, inpatient since 2014)
 – MUSC Research Data Warehouse (RDW): a copy of Epic data for clinical research

• Data source
 – Cohort: a sample of 144 MUSC Medicare outpatients who had NO coded falls risk screening data in 2015
 – Progress notes and consult notes collected during 2015 (n= 1,558)
Method (Con’t)

• Falls Risk Screening Measure (CMS193v3): report the percentage of Medicare patients (≥ 65 Yrs) who were screened for falls risk during the measurement period

Denominator: Medicare outpatient
Denominator exception:
 • non-ambulatory
 • wheelchair
Numerator: 3288F and 1100F (CPT codes)
Develop NLP lexicon

<table>
<thead>
<tr>
<th>Domain expert (initial terms)</th>
<th>NLP informatician (lexicon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fall</td>
<td>Enhanced “falls” terms: spelling variants, acronyms, and abbreviations</td>
</tr>
<tr>
<td>AMPAC (Activity Measure for Post Acute Care)</td>
<td>Modifiers: “evaluation,” “associated symptoms,” “risk screen,” “history of,” etc.</td>
</tr>
<tr>
<td>ADLs (Activities of Daily Living measures) plus “fall”</td>
<td>Negation:</td>
</tr>
<tr>
<td>nonambulatory</td>
<td>• lab value decreases (Hgb fall, bone density fall, etc)</td>
</tr>
<tr>
<td></td>
<td>• vital sign reduction (weight fall, BP fall, etc)</td>
</tr>
<tr>
<td></td>
<td>• seasons (last fall, in the fall, etc)</td>
</tr>
<tr>
<td></td>
<td>• problems (fell on ice, fall with fracture, etc)</td>
</tr>
<tr>
<td></td>
<td>• others (fall asleep, drain fall, fell out)</td>
</tr>
<tr>
<td></td>
<td>• nonambulatory (wheelchair bound, bed bound)</td>
</tr>
</tbody>
</table>

! Note: regular negation actually indicates a fall screening (eg, “no fall”, “denied falls”)
NLP performance evaluation

• Formal evaluation by gold standard (domain expert manual chart review)
• Performance measures
 – Precision: proportion of true positives to the total number of algorithm-identified cases
 – Recall: proportion of true positives that are retrieved by algorithms
 – F-measure: a harmonic mean of precision and recall
 \((F\text{-measure} = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}) \)
• Summary the reasons for false positives and false negatives
Results

- Lexicon: 38 terms of falls risk screening, 26 pre-negation, 35 post-negation

<table>
<thead>
<tr>
<th>Terms relevant to falls risk screening</th>
<th>Pre-negation</th>
<th>Post-negation</th>
</tr>
</thead>
<tbody>
<tr>
<td>fall</td>
<td>113</td>
<td>13</td>
</tr>
<tr>
<td>falls</td>
<td>47</td>
<td>6</td>
</tr>
<tr>
<td>falling</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>Fall Risk</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>fell</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>fall risk</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Fallen</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Fall</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>LE AMPAC</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>denies any falls</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>No falls</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>AM-PAC Raw Score</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>fell</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Denies falling</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>No recent falls</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Denies any fractures or falls</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>History of falls</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Falls risk scale score</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Risks for falls</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>risk of fall</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No risk of fall</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
I2E algorithm performance

- NLP: identified 62 cases of falls risk screening from 144 patients
- Gold standard (domain expert manual review): identified 64 cases
- In common: 59 true positives, 77 true negatives

<table>
<thead>
<tr>
<th>Domain expert</th>
<th>NLP algorithm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>positives</td>
<td>59 (TP)</td>
<td>5 (FN)</td>
</tr>
<tr>
<td>negatives</td>
<td>3 (FP)</td>
<td>77 (TN)</td>
</tr>
</tbody>
</table>

\[
\text{Precision} = \frac{\text{TP}}{\text{TP + FP}} = \frac{59}{59 + 5} = \frac{59}{64} = 0.92
\]

\[
\text{Recall} = \frac{\text{TP}}{\text{TP + FN}} = \frac{59}{59 + 3} = \frac{59}{62} = 0.95
\]

\[
\text{F-measure} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = 2 \times \frac{0.92 \times 0.95}{0.92 + 0.95} = 0.93
\]
Examples of misclassification

False Negatives

No falls but reports some near falls at home
She denies any trauma or falls in the last 6 months,
One week ago, she tripped and fell on her knees her
Denies falls or fractures, urinary stones, heat...
She denies any trauma or falls in the last 6 months,

False Positives

chest pain related to the fall and movement; but nothing...
the fall - she has no recollection of events
Fell around 10/12, tripped and fell
• I2E algorithms accurately identified 59 patients who had a falls risk screening documented in their clinical notes – (40% more than coded data)

• Several similar studies (focus on falls event detection) with modest performance
 – Toyabe: NLP identification of inpatient falls in progress notes
 • injurious inpatient falls, F-score 0.91
 • Inpatient falls, F-score 0.12
 – Shiner: falls detection from progress note (specificity: 0.80; sensitivity: 0.44)

• Detecting “falls screening” poses more challenge than detecting a “fall incident”
 – providers usually do not use “fall risk” or “fall screening” to document such a activity; they often use “fall” (236 “fall” mentions vs 42 “fall risk” mentions)

• Negation eliminates false positive and may introduce false negative, high specificity preferred for quality reporting
Conclusions

• Information about falls risk screening can be commonly found in clinical notes for patients lacking such screening recorded by coded data.

• The current quality reporting based on coded data only may underestimate the providers’ performance.

• Using both structured coded data and clinical narratives for quality reporting is necessary.
Person-driven Outcomes
Person Driven Outcomes
REVIEW OF PERSON DRIVEN OUTCOMES

HOW WILL NLP AFFECT WHAT WE CAN LEARN FROM THIS PROJECT
Person Driven Outcomes

Review of Person Driven Outcomes
What Matters Most?

Person-Driven Outcomes: Measurable, individualized and prioritized outcomes to guide care and evaluate quality

- **Health and Quality of Life Goals**
 - Lose weight
 - Increase mobility and stamina
 - Play with my grandchildren
 - Have privacy
 - Not be a burden to my family
 - Stay in my home
 - Help my caregiver be less stressed

- **Care Preferences**
 - Manage symptoms
 - Stop falling as much
 - Stay sharp
 - Take fewer medications
 - Avoid dialysis
 - Get my doctors to talk to each other
 - Be heard by my doctors
 - Stay out of the hospital
 - Choose who helps me dress and bathe

- **Values**
 - Choose who cares for me in my home

- **Caregiver Goals**
 - Help my caregiver be less stressed
Step 1: Elicit what is important

Top 3 Goals

Select up to three goals that the patient would like to work on in the next three months. You can add a custom goal using the button below.

<table>
<thead>
<tr>
<th>Goal Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay out of the hospital or emergency department</td>
</tr>
<tr>
<td>Get specific care, service or equipment (e.g., wheelchair, transportation services, doctor’s appointment)</td>
</tr>
<tr>
<td>Be physically active (e.g., walking, swimming, do physical or occupational therapy)</td>
</tr>
<tr>
<td>Care for myself (e.g., dressing, bathing, cooking, shopping, finances)</td>
</tr>
<tr>
<td>Do recreational activities (e.g., hobbies, community events, travel, volunteer)</td>
</tr>
<tr>
<td>Avoid accidents such as falls</td>
</tr>
<tr>
<td>Socialize with friends and family</td>
</tr>
<tr>
<td>Practice religious or spiritual life</td>
</tr>
</tbody>
</table>
Step 2: Determine how it will be measured

What is the patient or caregiver’s goal you will be working on?

- Avoid accidents such as falls

Do you want to measure this goal using a Patient Reported Outcome Measure? Some examples of goals that may be measured well with Patient Reported Outcome Measures are mental health related (depression, anxiety, cognition), symptoms (dyspnea, fatigue, and sleep), or physical function.

- YES - Use PROM
- NO - Use Goal Attainment Scaling

Continue
Step 3a: Measure the Outcome

Goal Attainment Scaling

<table>
<thead>
<tr>
<th>Goal Questionnaire</th>
<th>GAS Questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>What outcome did you identify as most important? What is the participant's SMART goal? 📝</td>
<td>🟢 Sleep better through the night</td>
</tr>
<tr>
<td>Is this a maintenance or improvement goal? 📝</td>
<td>🟢 Maintenance</td>
</tr>
<tr>
<td>🟢 Improvement</td>
<td></td>
</tr>
</tbody>
</table>

Expectation Scale

- **Much less than expected (-2)**
 - Wake up 3-4 times a night and not fall asleep until after midnight

- **Where are you now? (-1)**
 - Wake up 3-4 times a night

- **Expected (0)**
 - Only wake up once a night

- **Somewhat better than expected (+1)**
 - Not wake up at all during the night

- **Much better than expected (+2)**
 - Not wake up at all during the night and get a full 8 hours of sleep
Step 3b: Measure the Outcome

PROMs

Patient selects the Person Reported Outcome Measure that captures the outcome of most importance to them.

<table>
<thead>
<tr>
<th>Goal Questionnaire</th>
<th>PROM Questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>What area do you want to work on? What category describes your goal?</td>
<td></td>
</tr>
<tr>
<td>Physical Function</td>
<td></td>
</tr>
<tr>
<td>Mobility</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
</tr>
<tr>
<td>Depression (PHQ-9)</td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td></td>
</tr>
<tr>
<td>Anxiety (GAD-7)</td>
<td></td>
</tr>
<tr>
<td>Anger</td>
<td></td>
</tr>
<tr>
<td>Pain Interference with Daily Activities</td>
<td></td>
</tr>
<tr>
<td>Pain Behavior (behavior in response to pain)</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
</tr>
<tr>
<td>Dyspnea Severity</td>
<td></td>
</tr>
<tr>
<td>Sleep Related Impairment</td>
<td></td>
</tr>
<tr>
<td>Cognitive Function</td>
<td></td>
</tr>
<tr>
<td>Ability to Participate in Social Activities</td>
<td></td>
</tr>
<tr>
<td>Satisfaction with Social Role</td>
<td></td>
</tr>
<tr>
<td>Social Isolation</td>
<td></td>
</tr>
<tr>
<td>Emotional Support</td>
<td></td>
</tr>
</tbody>
</table>

Confidential - Do Not Distribute
Step 4a: Feedback and Reporting

Patient Facing Reports

December 18, 2017

Personal Report for Jane Doe

Goal: I will remain mentally stable and to feel depressed less than 2 days a week.

Outcome: Depression

Score: 13 (Lower scores are better.)

You would like to improve this score.

Possible Barriers:
Trouble getting out of the house. Daughter may not be able to provide ride to psychiatrist appointment.

Plan:
Become more involved in the community – join the church choir and carpool with others. Continue regular appointments with psychiatrist. Get additional CountyRide vouchers for transportation.

Next follow up: 6 months
Care Manager: John Smith
Phone Number: 555-555-5555

Priority Health

Your Score: 13
Previous: 27
Best possible
Worst possible
Step 4b: Feedback and Reporting

Patient Facing Reports

October 18, 2017

Personal Goal Report for Jane Doe

Goal: To go to Arizona the first of the year

This is a goal to IMPROVE At your last follow up you had done SOMewhat LESS THAN EXPECTED

<table>
<thead>
<tr>
<th>Much less than expected</th>
<th>Somewhat less than expected</th>
<th>Expected Level</th>
<th>Somewhat better than expected</th>
<th>Much better than expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>To experience delays in healing, and not be able to travel, as planned</td>
<td>To be back to baseline eventually, but not at rate of expectation</td>
<td>To be at baseline to travel by Jan 1, 2017</td>
<td>To be back to baseline by Christmas 2016</td>
<td>To be back to baseline by Thanksgiving 2016</td>
</tr>
</tbody>
</table>

Barriers: Concern that physical therapy will be too expensive

Plan: Continue working with Physical Therapist
Do daily exercises as described by the Physical Therapist
Get patient qualified for lower-cost services (to overcome cost barrier)

Next follow up: 3 months Care Manager: John Smith Phone Number: 555-555-5555
Step 5: Measurement

<table>
<thead>
<tr>
<th>Clinician</th>
<th>% pts. with goal and plan documented in last 6 months</th>
<th>% pts. with follow-up on goal in last 6 months</th>
<th>% of pts. with goal achieved in last 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinician A</td>
<td>99</td>
<td>81</td>
<td>74</td>
</tr>
<tr>
<td>Clinician B</td>
<td>100</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>Clinician C</td>
<td>80</td>
<td>75</td>
<td>65</td>
</tr>
<tr>
<td>Clinician D</td>
<td>75</td>
<td>74</td>
<td>50</td>
</tr>
</tbody>
</table>

Provide organizations with a way to track how well they are doing helping people to achieve what they say matters most.
Person Driven Outcomes

How will NLP affect what we can learn?
Opportunities to Use NLP

What can we learn?

<table>
<thead>
<tr>
<th>SMART Goal selected for scaling</th>
<th>GAS - Much less than expected</th>
<th>GAS - Somewhat less than expected</th>
<th>GAS - Expected</th>
<th>GAS - Somewhat better than expected</th>
<th>GAS - Much better than expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>To walk with a cane again instead of walker</td>
<td>Require use of a wheelchair</td>
<td>Walk with a walker</td>
<td>Walk with a cane within next 3-6 months</td>
<td>Walk with a cane within next 1-2 months</td>
<td>Walk with a cane within the next month</td>
</tr>
<tr>
<td>To walk without any equipment, cane walker etc.</td>
<td>Rely on equipment for walking most of the time</td>
<td>Walking with cane/walker when out of home and longer distances</td>
<td>Walk without equipment when out of home for daily activities</td>
<td>Rarely use equipment for walking unless very long distances</td>
<td>Never have to use equipment for walking</td>
</tr>
<tr>
<td>To be well enough to be able to mow his lawn in 6 months</td>
<td>To rely on others for lawn care</td>
<td>To mow lawn by next fall</td>
<td>To mow lawn by next summer</td>
<td>To mow lawn by next spring</td>
<td>To go shopping or similar activities without wheelchair by mid-winter</td>
</tr>
<tr>
<td>To be "normal" walk without equipment and have pain controlled as 5 out of 10.</td>
<td>To require use of a wheelchair at times and have pain rating 8-10 in 6 months.</td>
<td>To require use of a walker/cane and have pain rating 6-8 within 6 months.</td>
<td>To walk without equipment and occasionally use a cane with pain rating 5-6 within 6 months.</td>
<td>To walk without equipment, occasionally a cane and have pain rating 4-5 within 6 months.</td>
<td>To walk without equipment and report pain rating 0-3 within 6 months.</td>
</tr>
<tr>
<td>To resume "normal" life (driving, outings, visiting father) and to improve diabetes A1c from 10%</td>
<td>Not be able to drive, rely on others for some needs and have no change in A1c within 6 months.</td>
<td>Drive, meet with friend and family within 3 months and improve A1c to 9 by May 2017</td>
<td>Drive, meet with friends and family within 2 months and improve A1c to 8 by May 2017</td>
<td>Drive, meet with friends and family within 6 weeks and improve A1c to 7 by May 2017</td>
<td>Drive, meet with friends and family within 1 month and improve A1c to 6.5 by May 2017</td>
</tr>
</tbody>
</table>

Goal Scaling

Patient Reported Outcome Measure

Goal Achievement

Goal Inventory

Patient Characteristics

Goal
“I was made more aware of the time spent at the bedside, how much you can gain from that conversation, how much information you can gain to make the right referrals and to set that patient up for even a greater success...”

– Nurse care manager
“...we work together. I don’t feel like she’s giving...orders to have things done. I feel like...she’s understanding of what he can do.”

– Wife of 85-year-old male patient
Questions
BMI Measures
Measurement Applications for NLP

Measure Case Studies - Weight Assessment and Counseling for Nutrition and Physical Activity for Children/Adolescents (WCC)

Description:

The percentage of members 3–17 years of age who had an outpatient visit with a PCP or OB/GYN and who had evidence of the following during the measurement year.

This measure has three rates

- BMI percentile documentation*
- Counseling for nutrition
- Counseling for physical activity

*Because BMI norms for youth vary with age and gender, this measure evaluates whether BMI percentile is assessed rather than an absolute BMI value.
Measurement Applications for NLP

Measure Case Studies - Weight Assessment and Counseling for Nutrition and Physical Activity for Children/Adolescents (WCC)

Measure Specifications

Eligible Population: Patients aged 3–17 years as of December 31 of the measurement year.

Denominator: A systematic sample drawn from the eligible population

Numerator: BMI Percentile
BMI percentile during the measurement year as identified by administrative data or medical record review

Numerator: Counseling for Nutrition
Documentation of counseling for nutrition or referral for nutrition education during the measurement year as identified by administrative data or medical record review

Numerator: Counseling for Physical Activity
Documentation of counseling for physical activity or referral for physical activity during the measurement year as identified by administrative data or medical record review
Measurement Applications for NLP

Measure Case Studies - Weight Assessment and Counseling for Nutrition and Physical Activity for Children/Adolescents (WCC)

Definitions

Administrative Specification
BMI Percentage Value Set
Nutrition Counseling Value Set
Physical Activity Counseling Value Set

Medical Record Review: BMI Percentile
Documentation must include height, weight and BMI percentile during the measurement year. The height, weight and BMI percentile must be from the same data source.

Either of the following meets criteria for BMI percentile:
- BMI percentile documented as a value (e.g., 85th percentile).
- BMI percentile plotted on an age-growth chart.

Only evidence of the BMI percentile or BMI percentile plotted on an age-growth chart meets criteria.
Measurement Applications for NLP

Measure Case Studies - Weight Assessment and Counseling for Nutrition and Physical Activity for Children/Adolescents (WCC)

Definitions:

Medical Record Review: Counseling For Nutrition

Documentation of counseling for nutrition or referral for nutrition education during the measurement year as identified by administrative data or medical record review.

Documentation must include a note indicating the date and at least one of the following:
- Discussion of current nutrition behaviors (e.g., eating habits, dieting behaviors)
- Checklist indicating nutrition was addressed
- Counseling or referral for nutrition education
- Member received educational materials on nutrition during a face-to-face visit
- Anticipatory guidance for nutrition.
- Weight or obesity counseling
Measurement Applications for NLP

Measure Case Studies - Weight Assessment and Counseling for Nutrition and Physical Activity for Children/Adolescents (WCC)

Examples from medical transcripts

The patient was given a healthy eating article today and really stressed the importance of at least decreasing the amount of sugar intake as it is a perpetuator of inflammation... 03/11/2018

She has been trying to work on nutrition and decreasing her saturated fat intake. ... 01/12/2018

Provide high protein diet education for patient and mother. ... 03/17/2018

Provide patient with new type 2 diabetes diet education. ... 02/13/2018

Provide gradual weight loss diet education, heart healthy nutrition education, and diabetes diet education. ... 06/04/2018

I will see her in my office in 3 to 4 weeks where I will give her some lifestyle modifications and dietary advice and disclose the findings of the scope to her. ... 10/23/2017
Measurement Applications for NLP

Measure Case Studies - Weight Assessment and Counseling for Nutrition and Physical Activity for Children/Adolescents (WCC)

Definitions:

Medical Record Review: Counseling for Physical Activity
Documentation of counseling for physical activity or referral for physical activity during the measurement year as identified by administrative data or medical record review.

Documentation must include a note indicating the date and at least one of the following:
- Discussion of current physical activity behaviors (e.g., exercise routine, participation in sports activities, exam for sports participation)
- Checklist indicating physical activity was addressed
- Counseling or referral for physical activity
- Member received educational materials on physical activity during a face-to-face visit
- Anticipatory guidance specific to the child’s physical activity.
- Weight or obesity counseling
Thank You

Simon Beaulah
Senior Director, Healthcare
Linguamatics
Simon.Beaulah@Linguamatics.com
781.974.9442

Ross Martin
Vice President, Professional Services
360 Degree Insights LLC
ross@360degreeinsights.com
202.697.307